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On the Identity and Estimation of those Cosine Invariants, Cos (¢, +@,+@,+0,),
which are Probably Negative

By HERBERT HAUPTMAN*
Medical Foundation of Buffalo, Buffalo, New York 14203, U.S.A.
(Received 26 November 1973 ; accepted 18 February 1974)

If hy, h,, by are fixed reciprocal vectors which satisfy h; +h,+h; =0, and if k is the primitive, uniformly
distributed random variable, then, under the assumption that each of | Ey,|, | E_y,.ul is sufficiently small,
the conditional probability distribution of the cosine invariant cos P+ @-—n—x+@_n,+0_ny), given
|E_p3+xls | Eidl, [ En, +xl, is found. The distribution leads to the surprising result that the conditional ex-
pected value of this cosine invariant is always negative and approaches —1 with increasing
|ExEy +xEnyEngl. If m,n,p,q are fixed reciprocal vectors satisfying m+n+p+q=0, suitable sampling
of reciprocal space then leads to a formula for the cosine invariant cos (¢m+ @a+9¢,+¢,) having
probabilistic validity in the case that |Em.nl, |Em.pl and |Ew.ql are sufficiently small. It follows, in
particular, that under the stated conditions the value of the cosine is probably negative and the larger
the value of |E,E,E,E,| the more negative the cosine is likely to be.

1. Introduction

Explicit formulas for the cosine seminvariants cos ¢
and cos (¢, + ¢,), having exact validity under certain
conditions, are now known for a number of space
groups, and the algebraic techniques for deriving
similar formulas in most of the other space groups
have been described (Hauptman & Karle, 1953;
Hauptman, 19724, 5). Both algebraic and probabilistic
methods are available for estimating the value of the
cosine invariants cos (¢, +¢,+¢;). Thus it is known
that the conditional expected value of this cosine,
given | E, E, E;|, is always positive and approaches unity
with increasing |E,E,E;|. However, except for some
recent semi-empirical observations on invariants of
special type by Schenk & de Jong (1973), no theoretical
estimate has hitherto been known for the general
cosine invariants, cos (¢, + ¢, + @3+ ¢,), which are de-
pendent on four phases. A major goal of the present
paper is to derive an estimate for the cosine invariant
€0S (Pm + ¢n+¢p+¢q) under the condition that each
Of |Egy 4 nls |Em+pls |Em+ql is very small, and it is shown,
in particular, that the conditional expected value of
this cosine, given |E,,E,E E,|, is always negative and
approaches — 1 with increasing |E, E,E E,|. Since the
identity of those cosine invariants which are small or
negative is of crucial importance in direct methods of
phase determination, it is anticipated that the un-
expected results obtained here will have important
application in the further development of these proce-
dures.

2. For fixed h, and h;, the conditional distribution of
the pair @y Qn+y, given |E_y 1y, |Ex| and |Ey 4]
Fix the reciprocal vectors hy,h,, h; subject to
h1+h2+h3=0, (2.1)

* Part of this work was done while the author was a visit-
ing fellow in Italy under the auspices of the Consiglio Nazio-
nale delle Ricerche, March 15-May 15, 1973,

and assume that a crystal structure, in the space group
P1, is also fixed. As usual, denote by N the number of
atoms, assumed identical, in the unit cell and by ¢ the
phase of the normalized structure factor E, and intro-
duce the notation

Ehj=Ej’ |Ehjl=|Ej|3 wh_]:(oja j=1a2a3' (2'2)

Suppose that the vector k is the primitive random
variable which is assumed to be uniformly distributed
throughout reciprocal space. Then E_y; 4k, Ex, Eny 4k
as functions of the random variable k, are themselves
random variables with joint probability distribution
P(Ry, Ry, R;; &y, P, &;) where R, is associated with
|E-nz+xls Ry with |Eyxl, Ry with |Ey, ], @, with
@ _n3+x P With ¢y, and @; with gy, 4. An expression
for P(Ry, Ry, Ry; @,, D, D) sufficiently accurate for all
values of the parameters E,, E,, E; and the whole range
of values of the variables R,,R,,R;, ®,,®,, D; to be
useful here has been obtained recently (Tsoucaris,
1970; Hauptman, 1971, 19724, p. 165), and, correct to
terms of order 1/N, is given by

RiR,R;
34

1 2 2
X exXp {_Z [Rf (1— Iilrl ) +R? (1—- Il;sz' )

)

[ 2
xexp gz [RuRulEsl cos (01— @+ 99

+ R, R4|Ey| cos (P, — D3+ ¢y)

P(Ry, Ry, R3; Dy, D,, D)~

+ R (1—

+ RsRy|E;]| cos (G5 — ¢1+(02)]}

2
xexp = o7 [RRAEL | c0s (B~ 21—pi=p)

+ Ry Ry| E5 E;| cos (D,— D3 — 9, — ¢3)
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+ R3R| E3E,| cos (D3 — D, — 93— ;)] }

X {1— ZIJ—V(R‘}+R§+R§+4R§R§+4R§R§

+4RRE— 12R? — 1 2R3 — 12R2 + 18)} 2.3)
where
1 2
4=1- N (E P +1E)* + | E5P) + N
X|EyE,E5 cos (93 + ¢+ 93). (2.4)

Next, denote by P(P,, D3| R, R,, R;) the conditional
joint probability distribution of the pair of phases
P> Py +x given that Ry, R,, R; have fixed, specified
values. Then P(D,, D;| R, R,, R;) is obtained from
P(R, Ry, R;; D,,D,, D;) by integrating the latter with
respect to @, from 0 to 2z, fixing R, R,, R;, and multi-
plying the result by a suitable normalizing factor. This
integration has already been carried out in a different
context (Hauptman, 1971, 1972a, pp. 167-170). Refer
to equations (4.3) and (4.6) on pages 168 and 170 of
the latter reference and employ the Bessel Function
expansion

ZZ . ZZ
Iz)~1+ 7 ~eXp (Z)
if z is small. Since Ry, R,, R; are now regarded as fixed
parameters rather than variables, the conditional dis-
tribution, correct to terms of order 1/N, is readily
found to be (if R, is not too large)

P(¢2, QSI Rla Rz’ R3)
~ % exp {2R2R3|E1| cos (P, — D3 +¢y)

AN
RZ
2RRs (1- 1) IEE
B A

X ¢0s (B, — @—q)z—m} @.5)

where K is a suitable normalizing constant. Assume
next that R? is small compared to unity and that [E;] is
small compared to |E,E5|/N'2, i.e.

Ri<l, |E|<|EE|/N'Y2 (2.6)
Then (2.5) becomes (c¢f. Hauptman, 1972a, p. 144)
1
P(¢2’ ¢3| R13R29R3) ==

K
< exp{— 2R, R\ E, B

S cos (B Bi—pa—g9} 27)

where
K=4nr’Iy(B,3),
_ 2RR|EE)| _ 2R,Ri|E,E|
4N - N

By (for large N),

(2.8)
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and 7 is the modified Bessel function. Thus, for fixed
h;,h,, h; satisfying (2.1), (2.7) is the conditional joint
probability distribution of the pair of phases ¢y, ¥p; .+ x»
given that the primitive random variable k is uniformly
distributed over that region of reciprocal space for
which [E_jps+kl, [Exl and |Ey, x| have the specified
values R;, R, and Rj; respectively, provided, of course,
that (2.6) holds.

3. For fixed h, and h;, the conditional distribution,
expectation value and variance of cos (Qx— Qny+x— 9>
—3), given |E-n3si, B, and [Euy

3.1. The conditional distribution

Denote by P(x]B,;) the conditional probability dis-
tribution of cos (¢ — @ny+x—@2—¥3), given [E_p;.yls
|Eyl, |Eny+xl, under the assumption that (2.6) holds.
Then, in view of (2.7), P(x|B,s).depends only on the
parameter B,; and by standard techniques (Hauptman,
1972a, p. 146), is found to be

exp (— Bysx)

nly(By))/1—x2

Thus, for fixed hy,h,,h; satisfying (2.1), (3.1) is the
conditional probability distribution of the cosine
invariant, cos (@x+ ¢ _n;—x+@_n,+@_ps), given that
the primitive random variable k is uniformly dis-
tributed over that region of reciprocal space for
which [E_p;4xl, |Exl, and |Ey, .| have the specified
values R,, R,, and R; respectively, provided that (2.6)
holds.

P(x| By)~

3.1)

3.2. The conditional expectation value

. Den‘)te by 5{395 (¢x—@ny+x—02—03)| By} the con-
ditional expectation of cos (@x — ¢ny+x— @2 — @3), given
B,3, again under the assumption (2.6). One then readily
finds (¢f. Hauptman, 1972a, p. 155)

Il(B23)

{cos (¢ — Pny+x— 02— 93)| By}~ — T(Bg . (32

Under the assumption (2.6) then, the conditional ex-
pected value of the cosine invariant (3.2) is always
negative.

3.3. The conditional variance

The conditional variance of cos (g — ¢n; —x— @2 — 93),
given B,;, is also found in the standard way (Haupt-
man, 1972a, p. 156) and is given by

Var {cos (¢x — @ny +x— 02— ¢3)| B3}

II(BZS) If(BZZ’;)

~]— — .
B2310(B23) Ig(BZEl)

3.3)

The conditional distribution, expectation values,
and variances have been tabulated (Hauptman, 1972a,
pp. 148-150).
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4. Estimation of certain cosine invariants, cos(¢,, +
0o+ 0Q,+@,), by suitable sampling of reciprocal space

Fix the reciprocal vectors m,n,p,q subject to

m+n+p+q=0. 4.1
l\lllote that (4.1) implies |Ey, ; ol =|E, 14|, efc. Assume
that

IEm+n|2= IEp+q|2<< 1 5
IEm+p|2=|En+q|2<1, (42)
d IEm+q|2=|En+p|2<1,
an
|Em +nl IELEQI/NY2, | E, ol K|EnEGl/N'2,
IEm+pl<lEnEq|/N1/2, IEn+q|<<IEmEp|/N1/25 (43)
lEm+q|<|EnEpl/Nl/25 IEn+p|<<|EmEq]/N”2'

Roughly speaking then, (4.2) and (4.3) imply that each
of |Eql,|EL], | Eyl, | Eq| is relatively large and each of
|Em s ol |[Emtpls | Em+ql is relatively small. In actual
application, if N is at least moderately large, say
N>100, then (4.3) would imply that each of |E,, ..l
|Em +pl> |Em +4ql is quite small, about 0-2 or so, and (4.2)
would then be automatically satisfied if (4.3) holds.
Now, define hy,h,,h; by means of

hy=—m—-n, h,=-p, h;=—¢q 4.4)
so that, in view of (4.1), (2.1) is satisfied. Choose a
sample of size two from reciprocal space by means of

k=m or n. 4.5)
Then
hj+k=—nor —m (4.6)
respectively,
—h;+k=m+q or n+q 4.7
respectively and, in view of (4.2) and (4.3),
Rf= IE—-h3+k|2= |Em+q|2< l ’
|E\l =|Em 4 nl K|ELEG|/NV?=|E,E5| /N2, (4.8)
or
R%=|E—h3+k|2=]En+q|2<la
|E\|=|Em 4 nl KIEEQ|[N'?=|E,E|/N'2,  (4.9)

in the respective cases. In both cases then, (2.6) holds
and one obtains the following estimate of the condi-
tional expectation (3.2) by means of the sample (4.5):

3 D cos(put @ ny -kt @yt O ns)

k=m,n
1,(B)

1.(B) (4.10)

=C0S (Pm+ P+ 0p+9q) = —

where, from (2.8), and recalling that R,=|Ey|, Ry;=
IEh1+k|’ .

2
B=By~ 2EmEuEpFal @.11)
N
Next, define hy,h,,h; by means of
hj=—-m—p, hy=-n, hy=-q (4.12)
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so that, in view of (4.1), (2.1) is satisfied. Choose a
sample of size two from reciprocal space by means of

k=m or p. 4.13)
Then
h;+k=—por —m 4.19)
respectively,
—h;+k=m+q or p+q 4.15)
respectively and, in view of (4.2) and (4.3),
sz IE—h3+k|2= IEn+q|2< 1 2
|Eil=|Em 4 p| KIEEq|/N'2=|E,E4| [N, (4.16)
or
R§= |E—h3+k|2= IEp+q|2< 1 [}
|Et| =|Em 1 pl KIELEQl/N'2 = |E,E5| /N2, (4.17)

in the respective cases. In both cases then, (2.6) holds
and one obtains the following estimate of the condi-
tional expectation (3.2) by means of the sample (4.13):

T D coS(Put P ni—utPony TP _ng)

Kk=m,p
I(B)
=C0S (Pm+ @n+0p+0Pq) = — 1:(8)

(4.18)

where B is again defined by (4.11).
One continues in this way, defining h;,h,,h; suc-
cessively by means of

hj=—-m—-q, h=—n, h;=-—p, (4.19
hj=—-n—-p, h,=-—m, hy=—q, (4.20)
hj=-n—q, hy=-m, h;=-p, (4.21)
hy=—p—-q, hy,=—-—m, h;=—n, (4.22)

and respective samples of size two from reciprocal
space by means of

k=m or q, (4.23)
k=n or p, (4.24)
k=n or q, (4.25)
k=p or q. (4.26)

As before, one is led in every case to the same sample
estimate of the expectation value of the cosine
invariant coS (@x+@_p -k +@-n,+@_ny), given by
(4.10) or (4.18) with B defined by (4.11). Averaging
these six equations one obtains the first major result of
this paper that, subject to (4.2) and (4.3), and based on
an overall sample of size twelve from reciprocal space,

1,(B)

Cos ((pm+(on+¢p+¢q): - I()_(B) (427)
in which
B= ——2]E'“1§\';E"E‘ll . (4.28)
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5. Improved estimate for the cosine invariant

If N is only moderately large, it is not justified to re-
place 4 by unity in (2.8) as has been done in the deriva-
tion of (4.27). It is necessary instead, as reference to
(2.4) shows, to use

4~1— %(IE1IZ+|E2I2+I53I2) (5.1)
since the last term of (2.4) is relatively small. In this
case the sampling procedure of § 4 leads to six different
estimates for the expectation value of the cosine
invariant, rather than just the single estimate (4.27).
Averaging over these six estimates one obtains the
improved formula, again based on an overall sample
of size twelve from reciprocal space,

1,(B,)
COS (Pm T+ Pnt@p+0)= — ,
(P +¢n+0p+00) < B0/
in which the average is taken over the six values of B,:

5 = UEmEaEyEq|
" AN

(5.2)

p=1,....6.  (5.3)

1
A1=1_ W(lEmlz'{'lEnlz)’ (54)

Table 1. Thirty cosines predicted 1o be r.egative

.
.
0
»

Sertal = ] 3 b = con (eggrogtog) Dtacrepancy
broot R N R U R P T T et T St O P
- ® =" i @ (5.2
234 911 33s 870 mé3 181 543
1 2,830 2.566 2.001 2.152 0.)49 0.176 0.376 .16 -0.985} -0.722 -0.846 0.139
670 91 &70 %11 1581 Joo 131
2 2,626 2.566 2.152 1957 0.179  0.133  0.176  1.96 -0.9646 -0.691  -0.820 0,145
112 834 612 1352 346 727 o0io
3 2170 1793 1.559 3.087 0.09%  0.258  0.385  1.29 -0.7950 -0.542  -0.692 0.103
187 332 643 &12 233 74% 313
‘ 1.839  3.034 1.604 1.871 0.090 0.216  0.261  1.15 -0.9998 -0.495  -0.644 0.356
131 343 o071 51 42 152 322
s 2,862 2.275 1811 1325 0.222 0.229  0.387 107 -0.8467 -0.469  -0.615 0.232
152 331 6112 33 383 784 Ja&jl
6 3.087 1329 1713 2,136 0.186 0,275  0.282 1.0 -0.8312 -0.45¢  -0.607 0.224
ZI1 23% «%2 iun1 3¥3 o83 3102
? 1731 2.830 1,899 1.556 0.040 0.172 0,354 0.9 -0.9442 <-0.840  -0.574 0.370
333 417 381 W23 744 631 Fs1
8 3.036 1.871 1.766 1.367 0,210 0.268  0.356 0.9 -0.6571 -0.625  -0.562 0.095
3843 1371 780 TMée2 422 10i3 810l
9 2.215 2862 1.65 1.20 0.222  0.286  0.290 0.92 -0.9274 -0.417  -0.553 0.374
27s Ls% 931 120 831 s%s 3os
10 1.486 1.770 2,201 2.217 0.189  0.23L  0.327  0.88 -0.5911 -0.402  -0.510 0.081
332 123 1023 834 11 7351 3Jos
n 3.0 . 1.686 1367 1.79) 0.166  0.356 0.3l  0.86 -0.6627 -0.395  -0.523 0.140
Z2i2 o003 9II 322 ZI1 531 9§14
12 1871 1.555 2,566 1.665  0.166  0.287  0.379 0.8 -0.3480 -0.)87  -0.4% 0.052
253 741 23351 3%43 o09% 50z 110
1 2216 1.815 1.3a 2,215 0217 0,325 0.395  0.86 -0.9500 -0.387  -0.493 0.457
y32 115 81 8§34 2Z3 521 906
1% 3.03¢ 1.464  1.513 1.793 0,060 0,287 0.371  0.83 -0.9974 -0.383  -0.508 0.489
334 533 231 Te62 812 5o Y6
15 1.770  1.645 2,162 1.817  0.290 0.308 0.37¢ 0.78  -0.9959 -0.363 =0.454 0.542
832 728 312 31s Is& T0Is 326
16 2007 1.429 1758 2.000 0.169  0.180 0.371  0.73 +0.185% -0.3e3  -0.430 0.616
1%1 o071 01 893 192 822 7113
17 2,862 1.811 1.43) 1,407 0,229  0.25)  0.399  0.72 -0.5704 -0.338  -0.44& 0.126
Zs7 &3i 1071 F24 833 613 §102
18 2.183 1271 1761 2,147 0,179 0.306 0.3 072 -0.6766 =-0.138  -0.430 0.267
834 331 631 337 523 083 oz
19 1681 1.36k  1.535  2.034 0.15%  0.172 0,398 0.2 0571 -0.338  -0.453 0.304
i1 211 685 kel o0 2%e6 s
20 1731 1.061  2.259 1,936 0,133  0.299 0.310 0.71 -0.8703 -0.33%  -0.42) 0.447
3612 312 932 223 ¥ss 631 340
2 1.665 1.871 2.092 1.572 0.166 0,269 0.308 0.0 -0.99%3 -0.330  -0.408 0.588
Z3a Te2 713 233 346 331 831
7 1278 1.878 1,816 2,289 0.09  0.263 0.376  0.68 -0.3366 -0.322  -0.408 0.0n
152 381 221 B3Z «i3 333 3813
n 3.087 1766 1476 1.229 0.221  0.303  0.355  0.68 -0.7498 0,322  -0.435 0.5
113 33T 612 1630 442 721 9§43
2 1741 1,200 1,588 2,951 0.225  0.283  0.392  0.67 -0.6159 0317  -0.42) 0.193
188 331 112 3%3 233 o09% 143
25 1877 1388 2170 2,275 0,247  0.277  0.388  0.67 -0.9489 -0.317  -0.404 0.545
€s1 332 617 331 523 o6l 3290
2 1,535 3,034 1.588 1329 0.154  0.259  0.361  0.67 -0.9800 -0.317  -0.425 0.355
324 863 1070 771 &81 8354 115
2 2042 2,259 1.5 1,361 0.145  0.310 0369  0.66 -0.6145 -0.313  -0.387 0.117
70 o011 108f 332 881 231 132
28 2,152 1,803 1.386 1.758 0.145 0.240 0.331 0.65 -0.2315 -0.309 -0.386 0.148
304 357 sii 330 o052 872 134
2 1,893 L.76z  1.645 1.749  0.238 0,253  0.352  0.65 -0.5748 -0.309  -0.381 0.19¢
721 Y43 oI o035 362 711 134 B
30 1.476 2,014 2.566 1.222 0.09  0.284  0.)52  0.64 =-0.5041 -0.305  -0.3% 0,110
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1
4r=1- 5 (|Enl’ +|E,]), (5.5)

1
A3=1— 5 (| Eml*+1Eq]?), (5.6)

l
5 (B +IED), (5.7)

1
As=1— = (Eal* +1Eql), (5.8)

1
Ag=1— N (| Epl* +1Eq|%). (5.9

Clearly (5.2), the second major result of this paper,
reduces to (4.27) in the case that N is very large. A still
further improvement over (4.27) is presumably pos-
sible if one replaces the average (5.2) by a weighted
average employing the variance (3.3).

6. The applications

An idealized structure consisting of N=29 identical
point atoms in the space group P1 was constructed and
normalized structure factors and cosine invariants were
calculated as shown in the Tables. The structure was
chosen to simulate a real crystal structure; in partic-
ular the Patterson function exhibited a great deal of
overlap. As before, m,n,p,q satisfy

m+n+p+q=0. 6.1)

Those quartets m,n,p,q corresponding to the 30
largest values of B were selected for which the in-
equalities

[Em +al <04,
and

|Emipl <04, [Eniql<04  (6.2)

|Em+n|+lEm+p|+|Em+q]< 1 (6'3)

also held. Hence most of the inequalities (4.2) and (4.3)
were satisfied and it was therefore expected that (4.27)
and (5.2) would hold, at least approximately. The tenth
column of Table 1 shows the true values of the 30
cosine invariants cos (¢, + @n + ¢, + 94). Column eleven
gives the estimate (4.27) and the penultimate column
the improved estimate (5.2). The discrepancies be-
tween the true values and the improved estimate,
shown in the last column, are due in part to the prob-
abilistic nature of the estimates. However the estimates
tend to be too large, i.e. not sufficiently negative, and
this bias must be attributed to the omission of terms of
higher order in 1/N in the probability distribution (2.3)
or to the excessive overlap in the Patterson function
which destroys the exact validity of (2.3), the theore-
tical basis of (4.27) and (5.2). An important problem
for future research then would be to determine the
form of the improved probability distribution which
takes into account higher-order terms in 1/N and the
existing overlap in the Patterson function. Neverthe-
less, although quantitative agreement has not yet been
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quite attained, the qualitative agreement between the
estimates and the true cosine values is noteworthy. In
particular, the average value of the magnitude of the
discrepancy is 0-282 and the true value of only one of
the thirty cosines in Table 1, all of which are predicted
to be negative by (4.27) and (5.2), is in fact not nega-
tive. A further improvement can be realized by in-
troducing a scaling parameter which forces the distri-
bution of calculated cosines to be in better agreement
with the observed distribution of cosine values.

Table 2 lists the true values of those cosines corre-
sponding to the thirty largest Bvalues. Asit happens the
inequalities (6.2) and (6.3) were satisfied for none of
the quartets of Table 2. In strong contrast to the en-
tries of Table 1, not a single cosine in Table 2 is nega-
tive. Thus the criteria described here serve effectively to
identify the small fraction of cosines which are nega-
tive, at least for the larger values of B.

Experience has shown (e.g. Duax & Hauptman,
1972) that the ability to identify even a small number
of negative cosine invariants enhances greatly the
power of the direct method of phase determination. It
is therefore expected that the results secured here will
find early application especially if, by constructing
quartets of special type, one exploits systematically the
space group symmetries which may be present. In
particular, some negative cosines whose values are re-
quired by the space-group symmetries to be +1 may
well be readily identified.

The methods and results described in the present
paper were secured by the author during the first two
weeks (March 15-30, 1973) of the two month period,
March 15-May 15, during which the author held a
NATO Senior Fellowship Award under the auspices
of the Consiglio Nazionale delle Ricerche. He is
indebted to Drs Paolo Gallitelli and Lodovico Riva
di Sanseverino for making this fellowship possible. In
addition, Drs Giovanni Andreetti, Luigi Cavalca, and
Mario Nardelli organized a lecture series (1-15 April,
1973) at the University of Parma during which the
author had the opportunity to discuss his recent
research, to lecture and to consult with, among others,
Drs G. Andreetti, H. Krabbendam, D. Rogers, H.
Schenk, T. Spek, and D. Viterbo. Rogers and
Krabbendam, in particular, shared with the author and
others some of their preliminary ideas concerned with
the algebraic approach to the problem treated here
from the probabilistic point of view. Subsequently
Andreetti (1973) reported a preliminary calculation in
the space group P which confirmed the results ob-
tained in this paper. The author is grateful to all of
these people for the benefits he derived from these
stimulating discussions. Finally, grateful acknowledg-
ment is made to Dr David Langs who performed the
calculations summarized in the Tables.

In the recent past Drs Henk Schenk and Jan de
Jong, motivated by the Harker-Kasper inequalities,
made a number of empirical observations and applica-
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Table 2. Thirty cosines having largest values of B

Sortal & A 3 3 wen b ] conlogragrepeeg)

Number legl legl legl 4 leg 2l leg sl L1 B o
32 1i2 234 §10 Wi 162 §e2

101 3.0 2917 2.830 2.626 2.765 1.606 217 4.540 0.9984
i3 o072 1né1 Wl iz20 0T mis

102 3.087 3.0 2.672 2,454 2217 2.250 2.014 4.260 0.9936
077 112 EX) 544 780 3¢ 532

100 3.0 2.91 2.765 2.488 1.654 2.924 3.0 a.230 0.9971
ijz2 j112 131 941 W0 133 611

104 3.0 291 2.862 2.408 1.987 2.216 163 4.210 0.5570
072 030 f21 123 FUR S 153 nsa

108 3.053 2,951 2,862 2,250 2.525 2.0 1.928 4.010 0.6428
152 3317 112 5§32 254 660 Wio

106 3.087 3.0 2,017 2.092 2.162 1517 1.987 3.940 0.859
07 121 511 1042 {35 381 1050

107 3.05)  2.862 2.566 2.525 2.0 1.958 2,951 3.910 0.9666
i3s3 3312 517 343 231 s 25

108 3.087  3.0% 2,643 2.215 2,162 1.109 1.663 3.850 0.6861
0¥3 Lal 6%o f1w06 £33 6T 3 i34

109 3.083 2.7 2.626 2.516 2.9% 1.588 2.830 3.850 0.9949
[RE1 332 T113 109 2 100 1812 102 0

10 3.050 103 251 2.089 1.989 1325 1.987 3.840 0.919
152 332 fal 844 tgo 513 112

1w 3.087 303 2.765 2.135 1.805 1.614 2.917 3.820 0.9980
W30 Zak 670 804 w1y 2% 234

12 2950 2,765 2.626 2.547 1921 2.202 2.830 1.770 0.9802
183 0712 132 412 T20 L8o 382

m 3.082 3053 3.0 181 27 1.805 2.488 3.690 0.9977
is7 30 of f 233 27 8673 171

iy 3.087  2.951 2.566 2.289 2.18 1.802 2.862 3.690 0.9690
isi 1i2 fad EERY 660 516 I52

us 3.087 2917 2.765 2182 1.517 1.614 3.034 3.680 0.9725
f20 234 911 804 115 W30 723

116 2.862  2.830 2.566 2.547 1.464 2,951 1.220 3.650 0.9899
1030 712 234 112 22 §0¢ 42

ur 2951 2917 2.830 2.170 1.146 2.547 2176 3.650 0.902¢
is7 o072 1030 §10 i20 9817 mis

18 3.087  3.053 2.951 1874 2217 0.876 2.575 3.600 0.9223
930 234 XX} ‘a0 ol [B%] §10

it} 2951 2.830 2.765 2.282 2.547 1.559 2.625 3.570 0.9449
isa2 i34 Lal 943 506 711 670

120 3.0 2820 2,765 2.1% 2152 2.917 2.626 3.570 0.97%6
is? 337 Jas 130 234 i12 073

12t .08 303 2.488 2.7 2.162 1.81 3.053 357 0.9291
frz 131 als 253 [E 352 565

122 2917 2862 2.765 2.216 161 3.00 1.805 3.530 0.9136
352 150 370 11z 782 §az2 £io

123 3.0 2951 2.626 2.170 1404 2.1% 2.242 3.520 0.8773
073 1030 2358 876 ™45 2108 804

128 3.0 2,951 2.830 1999 2.525 2.516 2.587 3.520 0.9950
332 1050 §11 253 182 1733 far

128 3.0 2951 2.566 2.216 1404 2.206 2.862 3.510 0.5002
07 ¥ W30 121 961 PR 34 151 9ff

126 3.083 2951 2.862 1.958 2.525 1.387 2.566 3.490 0.8710
is52 072 121 ool 20 o1l I55

127 3087 3.08) 2.862 1.875 2. 1.064 2.07 3.490 0.8537
152 0r2 EEXS XX T20 258 332

128 3.087 3.0 2.488 2.142 2.217 1491 3.006 3.470 0.9873
552 w30 JUR S 3413 7oz 733 011

129 3038 2,951 2.454 2295 2,368 2.0 1.803 3.450 0.9961
132 Y21 §11 na2 353 TIY 10350

130 3.087  2.862 2.566 2.186 2.289 Len 2.951 3.420 0.9987

tions of some special cases of the negative cosine
invariants (4.27) and (5.2), particularly in the space
groups P1 and P1 (Schenk & de Jong, 1973; Schenk,
1973). Following the lectures and discussions in Parma
(April, 1973), Dr Schenk made applications of the more
general invariants studied here, and these are described
in the accompanying paper (Schenk, 1974).

This work was supparted in part by U.S.P.H. Grant
No. RR 05716.
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